1,686 research outputs found

    FASTER: Fast and Safe Trajectory Planner for Flights in Unknown Environments

    Full text link
    High-speed trajectory planning through unknown environments requires algorithmic techniques that enable fast reaction times while maintaining safety as new information about the operating environment is obtained. The requirement of computational tractability typically leads to optimization problems that do not include the obstacle constraints (collision checks are done on the solutions) or use a convex decomposition of the free space and then impose an ad-hoc time allocation scheme for each interval of the trajectory. Moreover, safety guarantees are usually obtained by having a local planner that plans a trajectory with a final "stop" condition in the free-known space. However, these two decisions typically lead to slow and conservative trajectories. We propose FASTER (Fast and Safe Trajectory Planner) to overcome these issues. FASTER obtains high-speed trajectories by enabling the local planner to optimize in both the free-known and unknown spaces. Safety guarantees are ensured by always having a feasible, safe back-up trajectory in the free-known space at the start of each replanning step. Furthermore, we present a Mixed Integer Quadratic Program formulation in which the solver can choose the trajectory interval allocation, and where a time allocation heuristic is computed efficiently using the result of the previous replanning iteration. This proposed algorithm is tested extensively both in simulation and in real hardware, showing agile flights in unknown cluttered environments with velocities up to 3.6 m/s.Comment: IROS 201

    Robust Adaptive Control Barrier Functions: An Adaptive & Data-Driven Approach to Safety (Extended Version)

    Full text link
    A new framework is developed for control of constrained nonlinear systems with structured parametric uncertainties. Forward invariance of a safe set is achieved through online parameter adaptation and data-driven model estimation. The new adaptive data-driven safety paradigm is merged with a recent adaptive control algorithm for systems nominally contracting in closed-loop. This unification is more general than other safety controllers as closed-loop contraction does not require the system be invertible or in a particular form. Additionally, the approach is less expensive than nonlinear model predictive control as it does not require a full desired trajectory, but rather only a desired terminal state. The approach is illustrated on the pitch dynamics of an aircraft with uncertain nonlinear aerodynamics.Comment: Added aCBF non-Lipschitz example and discussion on approach implementatio

    Multi-Robot Task Assignment and Path Finding for Time-Sensitive Missions with Online Task Generation

    Full text link
    Executing time-sensitive multi-robot missions involves two distinct problems: Multi-Robot Task Assignment (MRTA) and Multi-Agent Path Finding (MAPF). Computing safe paths that complete every task and minimize the time to mission completion, or makespan, is a significant computational challenge even for small teams. In many missions, tasks can be generated during execution which is typically handled by either recomputing task assignments and paths from scratch, or by modifying existing plans using approximate approaches. While performing task reassignment and path finding from scratch produces theoretically optimal results, the computational load makes it too expensive for online implementation. In this work, we present Time-Sensitive Online Task Assignment and Navigation (TSOTAN), a framework which can quickly incorporate online generated tasks while guaranteeing bounded suboptimal task assignment makespans. It does this by assessing the quality of partial task reassignments and only performing a complete reoptimization when the makespan exceeds a user specified suboptimality bound. Through experiments in 2D environments we demonstrate TSOTAN's ability to produce quality solutions with computation times suitable for online implementation.Comment: 7 pages, 5 figure

    Real-Time Planning with Multi-Fidelity Models for Agile Flights in Unknown Environments

    Full text link
    Autonomous navigation through unknown environments is a challenging task that entails real-time localization, perception, planning, and control. UAVs with this capability have begun to emerge in the literature with advances in lightweight sensing and computing. Although the planning methodologies vary from platform to platform, many algorithms adopt a hierarchical planning architecture where a slow, low-fidelity global planner guides a fast, high-fidelity local planner. However, in unknown environments, this approach can lead to erratic or unstable behavior due to the interaction between the global planner, whose solution is changing constantly, and the local planner; a consequence of not capturing higher-order dynamics in the global plan. This work proposes a planning framework in which multi-fidelity models are used to reduce the discrepancy between the local and global planner. Our approach uses high-, medium-, and low-fidelity models to compose a path that captures higher-order dynamics while remaining computationally tractable. In addition, we address the interaction between a fast planner and a slower mapper by considering the sensor data not yet fused into the map during the collision check. This novel mapping and planning framework for agile flights is validated in simulation and hardware experiments, showing replanning times of 5-40 ms in cluttered environments.Comment: ICRA 201

    Direct LiDAR-Inertial Odometry: Lightweight LIO with Continuous-Time Motion Correction

    Full text link
    Aggressive motions from agile flights or traversing irregular terrain induce motion distortion in LiDAR scans that can degrade state estimation and mapping. Some methods exist to mitigate this effect, but they are still too simplistic or computationally costly for resource-constrained mobile robots. To this end, this paper presents Direct LiDAR-Inertial Odometry (DLIO), a lightweight LiDAR-inertial odometry algorithm with a new coarse-to-fine approach in constructing continuous-time trajectories for precise motion correction. The key to our method lies in the construction of a set of analytical equations which are parameterized solely by time, enabling fast and parallelizable point-wise deskewing. This method is feasible only because of the strong convergence properties in our novel nonlinear geometric observer, which provides provably correct state estimates for initializing the sensitive IMU integration step. Moreover, by simultaneously performing motion correction and prior generation, and by directly registering each scan to the map and bypassing scan-to-scan, DLIO's condensed architecture is nearly 20% more computationally efficient than the current state-of-the-art with a 12% increase in accuracy. We demonstrate DLIO's superior localization accuracy, map quality, and lower computational overhead as compared to four state-of-the-art algorithms through extensive tests using multiple public benchmark and self-collected datasets

    Dynamic Landing of an Autonomous Quadrotor on a Moving Platform in Turbulent Wind Conditions

    Full text link
    Autonomous landing on a moving platform presents unique challenges for multirotor vehicles, including the need to accurately localize the platform, fast trajectory planning, and precise/robust control. Previous works studied this problem but most lack explicit consideration of the wind disturbance, which typically leads to slow descents onto the platform. This work presents a fully autonomous vision-based system that addresses these limitations by tightly coupling the localization, planning, and control, thereby enabling fast and accurate landing on a moving platform. The platform's position, orientation, and velocity are estimated by an extended Kalman filter using simulated GPS measurements when the quadrotor-platform distance is large, and by a visual fiducial system when the platform is nearby. The landing trajectory is computed online using receding horizon control and is followed by a boundary layer sliding controller that provides tracking performance guarantees in the presence of unknown, but bounded, disturbances. To improve the performance, the characteristics of the turbulent conditions are accounted for in the controller. The landing trajectory is fast, direct, and does not require hovering over the platform, as is typical of most state-of-the-art approaches. Simulations and hardware experiments are presented to validate the robustness of the approach.Comment: 7 pages, 8 figures, ICRA2020 accepted pape
    • …
    corecore